Bewirtschaftungsmaßnahmen bzw. -regimes zur Verminderung des Nitrataustrags aus landwirtschaftlich genutzten Böden in das Grundwasser in Sachsen

C3) Stabilisierung mineralischer N-Düngemittel

Grundsätzliches, Beschreibung:

- NH₄-N ist nicht verlagerungsgefährdet, wird aber im Boden schnell in Nitrat-N umgewandelt, die Zugabe von Nitrifikationsinhibitoren ("klassische Stabilisierung") verzögert diese Umwandlung und senkt die Gefahr von Nitrat-Verlagerungs-, aber auch gasförmigen Verlusten (N₂O, NO, N₂)
- bei Gabenteilungen kann insbesondere die Wirkung später N-Gaben durch Trockenphasen und die dann mangelnde Pflanzenaufnahme gefährdet sein
- die Zusammenfassung von z.B. zweiter und dritter Gabe zu Weizen wirkt dem entgegen, bedingt aber die Ausbringung einer hohen N-Menge, was bei Nitrat-N Verlagerungsgefahr bedeuten kann
- im Frühjahr ermöglicht eine Zugabe von Nitrifikationsinhibitoren eine zeitige NH₄-N-Gabe, wenn die Befahrbarkeit bereits gegeben ist, ohne hohe Verlagerungsgefahr in der Folgezeit
- die Zugabe von Ureaseinhibitoren zu mineralischem Harnstoff hat eine vollständig andere Wirkung, sie verzögert den Abbau von Harnstoff zu Ammonium und zielt auf eine Senkung gasförmiger Verluste (NH₃), sie ist in der DüV für die Aufbringung ohne unverzügliche Einarbeitung verpflichtend

Wirkung:

- die Zugabe von Nitrifikationshemmern ermöglicht die Ausbringung hoher Einzelgaben mit NH₄- oder Harnstoffdüngern, senkt die Nitrifikationsgeschwindigkeit und damit die Nitrat-Verlagerungsgefahr

Wirkung auf den Nitrat					
Absenkung des N _{min} zu	Senkung des	Ertragssicherung,	auf NH ₃ -Emissionen		
Vegetationsende	langjährigen N-Saldos	-stabilität			
+	+	++	+ 1)		

1) nur bei Düngung mit Harnstoff auf verlustgefährdeten Standorten

Wirkungsgeschwindigkeit auf									
Absenkung des N _{min} zu Vegetationsende	Senkung des N-Saldos	Nitrataustrag mit dem Sickerwasser	auf NH ₃ -Emissionen						
im betreffenden Jahr	im betreffenden Jahr	lang- und kurzfristig	sofort 1)						

nur bei Düngung mit Harnstoff auf verlustgefährdeten Standorten

die größten positiven Auswirkungen sind zu erwarten:

- bei hohen und/oder spät erforderlichen N-Gaben
- auf Nitrat-verlagerungsgefährdeten Standorten (insbes. D- und V-Standorte)
- auf Trockenheits-gefährdeten Standorten

Einschränkungen:

- der Einsatz von Nitrifikationsinhibitoren ist erst ab einer Mindest-N-Menge sinnvoll
- eine Gabenzusammenfassung schränkt die Handlungsmöglichkeiten in der Folge ein

Datenbelege aus Sachsen: siehe folgende Seite

Datenbelege aus Sachsen:

Prüfung stabilisierten Harnstoffs zu Wintergerste, Exaktversuch in Christgrün, V5, Lt2, AZ35:

	N-Düngung in kg N/ha												Korn-Ertrag	Korn-Ertrag	Korn-Ertrag
PG		1. Gabe				2. Gabe			gesamt	gesamt	gesamt	bei 86% TS	bei 86% TS	bei 86%TS	
	vor VB ab 1. Februar auf frostfreien Boden	kg/ha 2021	_	VB	_	kg/ha 2022	ВВСН 32 35		kg/ha 2022			kg/ha 21/22	dt/ha 2021	dt/ha 2022	dt/ha 21/22
1	ohne N	0	0	ohne N	0	0	ohne N	0	0	0	0	0	88,8	60,8	74,8
2		0	0	PIAGRAN pro (50%)	60	70	PIAGRAN pro (50%)	60	70	120	140	130	97,6	95,4	96,5
3		0	0	ALZON neo-N (100%)	120	140	ohne N	0	0	120	140	130	98,7	91,6	95,2
4	ALZON neo-N (100%)	120	140		0	0	ohne N	0	0	120	140	130	101,3	83,1	92,2
5	ALZON neo-N (50%)	60	70		0	0	PIAGRAN pro (50%)	60	70	120	140	130	99,6	90,4	95,0
6	ALZON neo-N (70%)	84	98		0	0	PIAGRAN pro (30%)	36	42	120	140	130	102,2	91,9	97,0
7	PIAGRAN pro (30%)	36	42	ALZON neo-N (70%)	84	98	ohne N	0	0	120	140	130	101,8	92,2	97,0
8		0	0	KAS (50%)	60	70	KAS (50%)	60	70	120	140	130	100,0	93,8	96,9
9		0	0	KAS nach BESyD	65	80	KAS nach BESyD	55	60	120	140	130	100,2	89,9	95,0
10		0	0	KAS (wie PG9 - 25 %)	49	60	KAS (wie PG9 - 25 %)	41	45	90	105	98	97,4	89,4	93,4
11		0	0	KAS (wie PG9 + 25 %)	81	100	KAS (wie PG 9 + 25 %)	69	75	150	175	163	102,1	87,6	94,8
12		0	0	Summe 1. + 2. (PG 9) mitENTEC 26	120	140	ohne N	0	0	120	140	130	101,6	86,6	94,1
										GD 5%			5,1	9,5	
		46 % Carbamid-N, mit Nitrifikationshemmstoff (MPA) und Ureasehemmstoff (2-NPT)													
		Harnstoff mit Ureasehemmstoff (2-NPT) 46 % N Gesamtstickstoff als Amidstickstoff													
	ENTEC 26: 7,5% NO3-N + 18,5% NH4-N + 13 % 5; mit Nitrifikationshemmstoff (3,4-Dimethylpyrazolphosphat)														

Vorläufige Bewertung (bisher nur zwei jährige Ergebnisse):

- Mit den geprüften Varianten stabilisierter Harnstoff-Düngung wurden sehr gute Ertragsergebnisse erzielt. Die Rohproteingehalte differieren teilweise erheblich. Die Unterschiede im N-Saldo (22 kg N/ha bei jeweils gleich hoher N-Düngung von 120 kg N/ha) belegen, dass die Einsatzstrategie der stabilisierten N-Dünger erheblichen Einfluss auf die N-Effizienz hat und dass hier Handlungsspielräume bestehen.
- Varianten mit sehr zeitiger erster N-Düngung vor Vegetationsbeginn zeigen gutes Potenzial.

Aktuell wird im Rahmen des F/E-Projektes StaPraxRegio (Förderung durch BMEL über die BLE) ein Baustein zur stabilisierten N-Düngung weiterentwickelt, der 2025 in das Programm webBESyD integriert wird (Quelle: Dr. Grunert, LfULG, 2023):

stabilisierte N-Düngung, Projekt StaPrax-Regio

SACHSE SACHSE

Ziele:

- regionalspezifische Anpassung der im Vorhaben StaPlaRes erarbeiteten Empfehlungen zur stabilisierten mineralischen N-Düngung zu Winterweizen, WGerste, WRoggen, WRaps
- Hinterlegung grundlegender Strategien in Abhängigkeit von Standort, Kultur, Zielertrag, ermitteltem N-Düngebedarf, Düngestrategie (nur stabilisiert oder kombiniert mit nicht stabilisiert)
 = statischer Teil
- Ableitung einer standortspezifischen Empfehlung unter Berücksichtigung von aktueller Bodenfeuchte und aktueller langfristiger Witterungsprognose des DWD (min. 6 Wochen)
 = dynamischer Teil
- Einprogrammierung in webBESyD ab 2024

Laufzeit: 2021-2024

Verbundpartner:

- SKW Stickstoffwerke Piesteritz GmbH (Projektleitung)
- Deutscher Wetterdienst Leipzig
- GIS-Arbeitsgruppe der Hochschule Anhalt
- Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie

=> Feldtage 2023 des LfULG

19 | 24.02.2023 | Dr. Michael Grunert

LANDESAMT FÜR UMWELT.

