
An den richtigen Stellen sparen: Ansätze zur Vermeidung von Nährstoffverlusten im Nitratgebiet

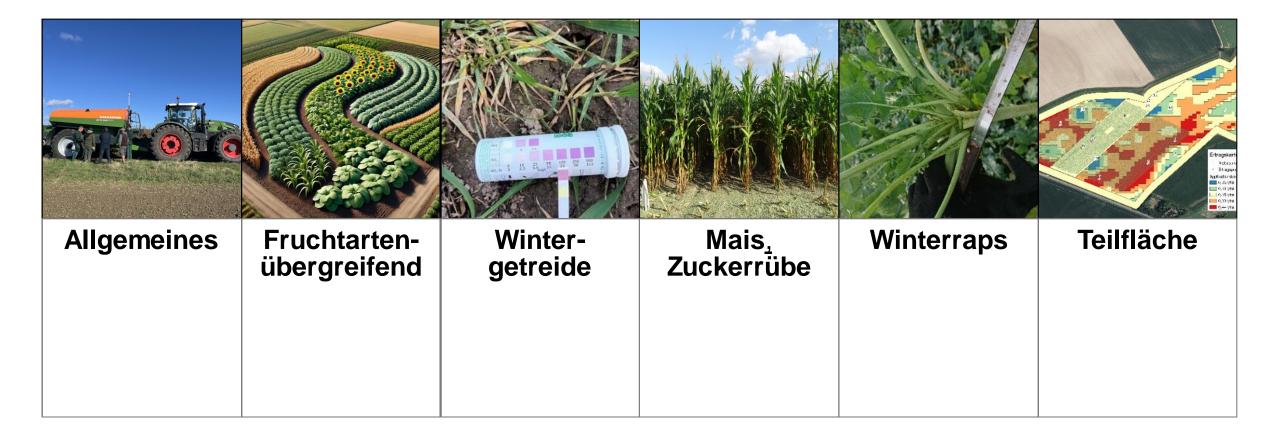
Katharina Schmidt

Team & Einsatzgebiete

Das AgUmenda Team:

Diplom Agrar-Ingenieure, Masteranden und Bacheloranden der Agrarwissenschaft

<u>Unsere Einsatzgebiete:</u>


"Landwirtschaftlicher Gewässerschutz" in Sachsen -Stickstoffeffizienz steigern, Nährstoffnachlieferung erfassen, Erosion stoppen, Versuchsanstellung und Öffentlichkeitsarbeit im Agrarbereich, Weiterbildung

Weitere Informationen unter - www.agumenda.de

Maßnahmen zur Nitrataustragsminderung (Stand 2025)

Inhalt des Vortrages

- (1) Einleitung
 - Nährstoffverluste
 - Verluste Messen/ Nachweisen
- (2) Maßnahmen zur Verlustvermeidung
 - Fruchtfolgegestaltung,
 Umverteilung, org. Düngung,
 Teilflächen- Bewirtschaftung
- (3) Bodenabtrag

Landwirtschaftlicher Gewässerschutz 2019-2023

Nährstoffverluste

Zu einer umweltschonenden und auf Nachhaltigkeit ausgerichteten Landbewirtschaftung gehört die **Begrenzung** von Nährstoffverlusten.

Auswaschung

mit Nitrat befrachtetes Sickerwasser

Gasförmige Verluste

Ammoniak
Lachgas während
Nitrifikation/Denitrifikation

Bodenabtrag (=Erosion)

1 cm Bodenabtrag
Bodenverlust: ca. 150 t/ha
P-Verlust: 60 kg P/ha
C-Verlust: 2500 kg C/ha
N-Verlust: 300 kg N/ha

Wie lassen sich N-Verluste messen/ nachweisen?

- Goldstandard: Lysimeter-Messungen
- N_{min}-Beprobung vor Winter
- Nährstoffbilanzierung auf Schlagebene = Schlagbilanz

Bild: LfULG

Verlustmessung: Nitrat-Dynamiken im Lysimeter (Werisch, 2021)

- Zufuhr: min. Dünger, Wirtschaftsdünger, Leguminose N-Bindung
- Abfuhr: Erntegut

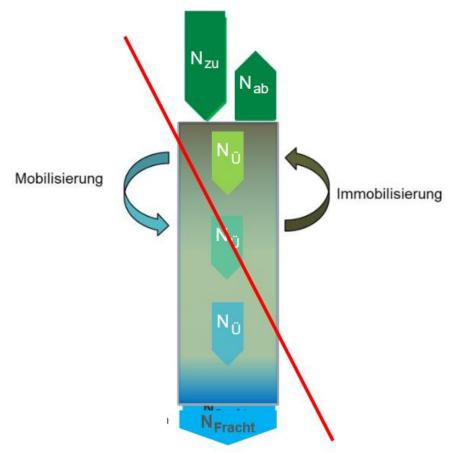
 Auffällig: trotz Reduktion der Überschüsse keine Veränderung der Austräge und teilweise auch gemessene Anstiege der N-Fracht

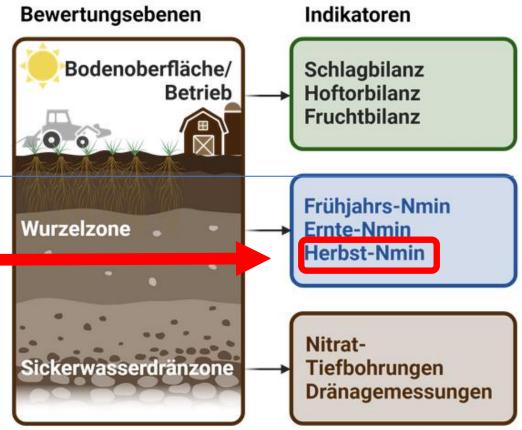
Bild: Schematische Darstellung der N-Bilanz Komponenten auf Lysimetern, Werisch, 2021

Verlustmessung: Nitrat-Dynamiken im Lysimeter (Werisch, 2021)

	netergruppe	Gruppe 5	Gruppe 1	Gruppe 9
	NStE	D3	D6	Lö3
	odenzahl	35	55	80
1981-1992	N-Saldo (kg/ha)	142	100	61
	N-Fracht (kg/ha)	51	38	4
1993-1998	N-Saldo (kg/ha)	-19	-52	-77
	N-Fracht (kg/ha)	45	28	1
1999-2009	N-Saldo (kg/ha)	77	30	-9
	N-Fracht (kg/ha)	61	29	1
2010-2019	N-Saldo (kg/ha) N-Fracht (kg/ha)	68 60	31 31	2

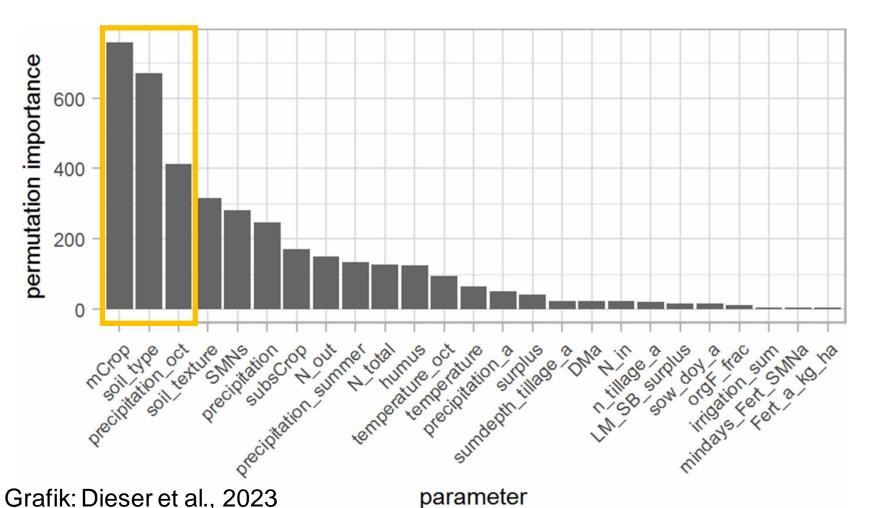
Verlustmessung: Nitrat-Dynamiken im Lysimeter (Werisch, 2021)




Bild: Erklärungsmodell für Nitratverlust im Lysiemter, Werisch, 2021

- Stickstoff: **reaktiv**, viele dynamische Prozesse!
- Mineralisierungsprozesse kaum beeinflussbar
- Einlagerung N aus Düngung in organischen N-Pool des Bodens
 - N im Sickerwasser hauptsächlich aus diesem N-Pool
- Stetig positive N-Salden reichern organischen N-Pool an
 - Steigerung N-Verlustpotential, insbesondere auf leichten Standorten
- Zeitverzögerter Effekt von N-Reduzierungs-Maßnahmen auf Nitratausträge

Weitere Ansätze zur Verlustmessung: Frühindikator Herbst-N_{min}

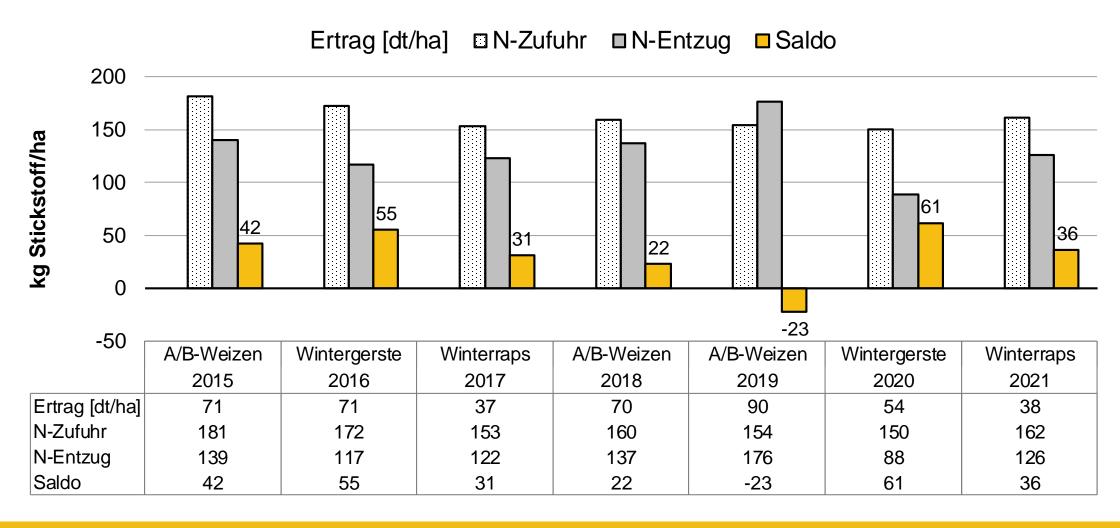


Frühindikatorensystem © JKI

MoNi JKI – Random Forest Analyse Top – Einflussfaktoren auf Herbst-N_{min}

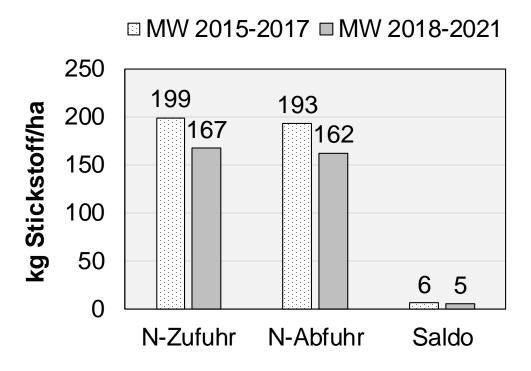
- (1) Hauptfruchtz.B. nach Kartoffeln106 kg N/ha, nachWintergerste 64 kgN/ha
- (2) Bodenart –
 beeinflusst Wasserhaltefähigkeit und
 somit Stickstoffdynamik
- (3) Niederschlag im Oktober – deutlich geringerer N_{min} ab 50 mm

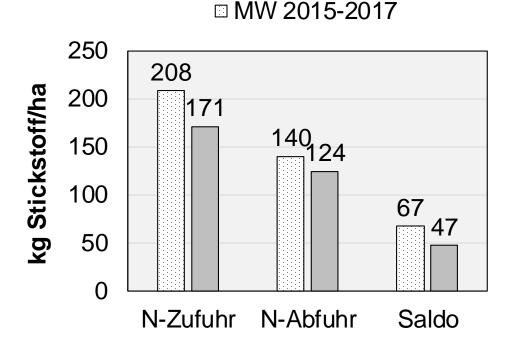
Schlagbilanzierung



- o schlagspezifisch
- Erfassung sämtliche N-Zufuhr und N-Abfuhr
- Berechnung N-Saldo
- o mehrjährig

Nährstoffbilanzierung auf Schlagebene Beispielschlag aus der Betriebsberatung (25 ha)


Entwicklung der N-Salden im Weizen und Raps im Mittel der Betriebe je Betrachtungszeitraum,



- rückläufiger Stickstoffeinsatz (35 kg N/ha)
- Trockenjahre und Erdflohproblematik

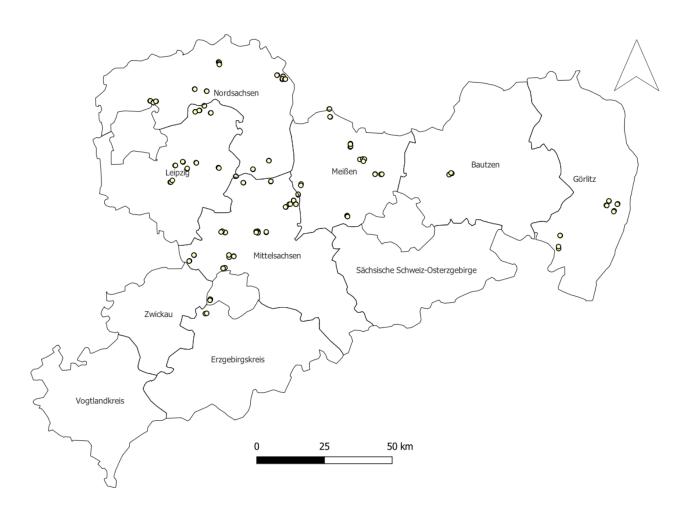
Weizen (1.700 ha + 1.900 ha)

Raps (1.200 ha / 1.350 ha)

Was greifen Bilanzen nicht auf?

Herbstdüngung dort, wo sie lange zulässig, aber nicht mehr fachlich sinnvoll war

Nährstofffreisetzung durch Bodenbearbeitung


Zeigen nicht an ob auf ggfs. auf hohe N_{min}-Werte angemessen reagiert wurde

Bilanzsaldo muss sehr fruchtartindividuell gesehen werden

Auftrag Gewässerschutz: Beobachtungsflächen Herbst-N_{min} im N-Gebiet

- seit 2024 N_{min} Messungen im Herbst,
 zu Beginn der
 Sickerwasserperiode
- In über 30
 Beratungsbetrieben,
 auf über 70 Schlägen

Versuchsfragen in den Strellner Fruchtfolgeversuchen (2023-2027)

- (1) Abschätzung des N-Verlustpotenzials auf einem sandigen Standort in einer ortsüblichen bzw. angepassten FF bei
 - Düngung nach DüV 100 %
 - Umsetzung der Düngevorgaben im N-Gebiet
- (2) Kosten-Nutzen-Abschätzung der rechtlichen Vorgaben
- (3) Möglichkeiten und Grenzen eines optimalen Nährstoffmanagements
- (4) Gibt es ökologisch und ökonomisch Anlass das bestehende Anbausystem zu überdenken?

Mehr zum Thema Verlustmessung:

"SAVE THE DATE"

Fachgespräch
Landwirtschaftlicher
Gewässerschutz

13.11.2025

Zwischenfazit zur Verlustmessung

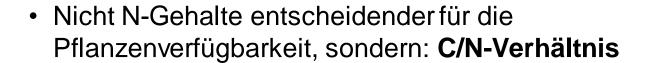
Ackerbau unvermeidbar verbunden mit dem Risiko von Nitratausträgen

Ziel: ausgeglichene N-Salden, um eine unkontrollierte N-Freisetzung im Herbst zu vermeiden

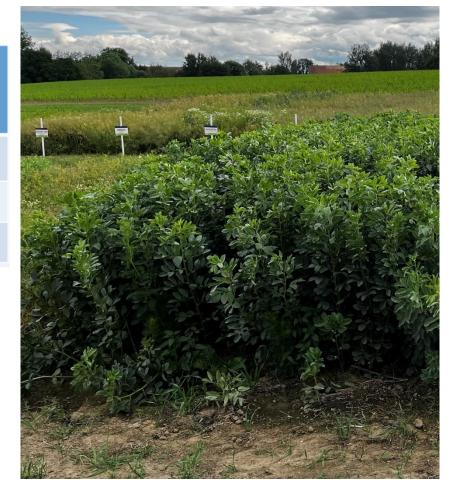
Nitrataustragsgefährdet: insbesondere leichte Standorte in Nordsachsen

Umfangreiche Monitoring-Bemühungen sind zu begrüßen - wenn sie zukünftig zu mehr Fachlichkeit in der Düngegesetzgebung führen (v.a. für Hochertragsregionen)

Maßnahmen zur Verlustvermeidung

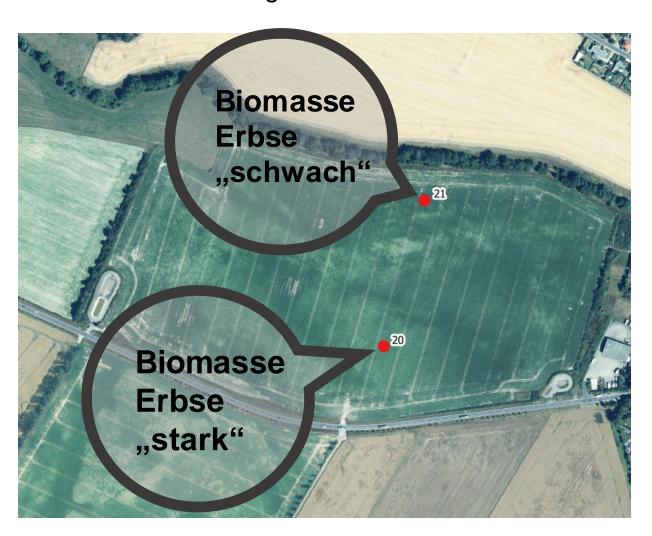

- Nachfrucht nach Leguminosen
- Umverteilung
 - Gesamt-N
 - Organische Dünger
- Teilflächendüngung
- Bodenabtrag

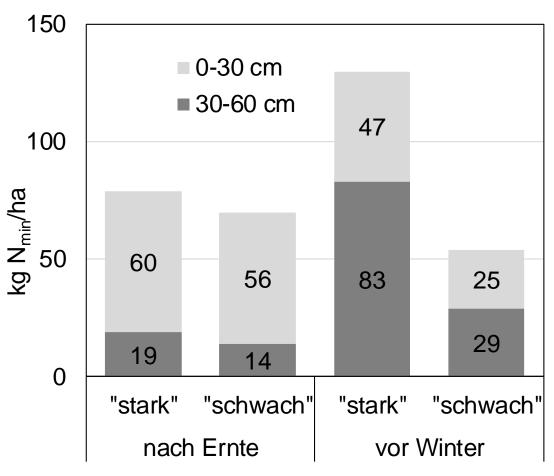
Leguminosen in der Fruchtfolge - Nährstofftransfer

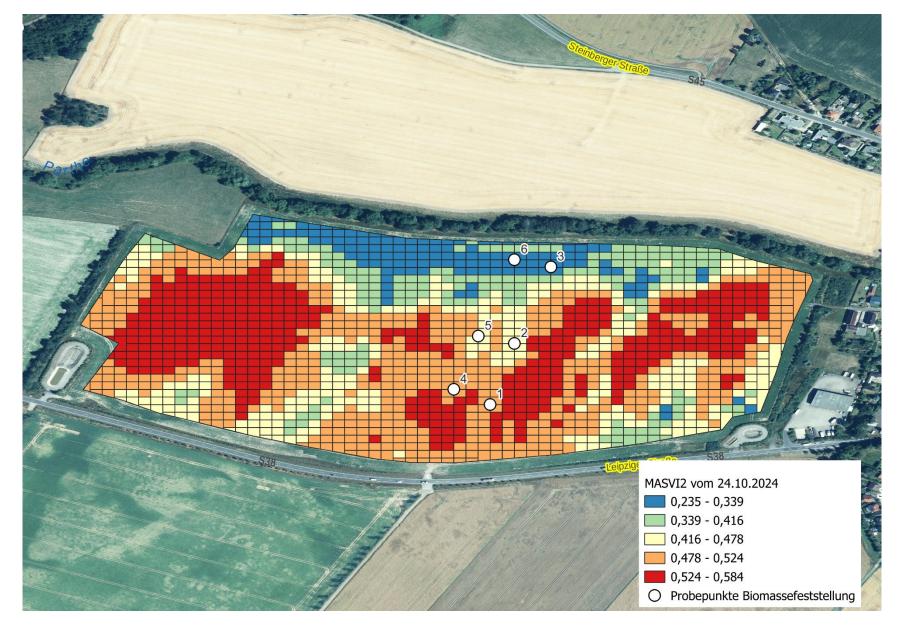

Auszug aus: Kage et al. (2022)

Substrat	Menge [t TM ha ⁻¹]	Gehalt C [t ha ⁻¹]	Gehalt N [kg ha ⁻¹]	C/N	I _{pot} [kg N ha ⁻¹]
Ackerbohnenstroh	6.5 – 9.5	1.7 – 2.1	45 – 55	50	50 – 60
Rapsstroh	4.0 – 5.0	2.8 – 4.0	34 - 48	80	110 – 150
Weizenstroh	10.0	4.5	38	120	190

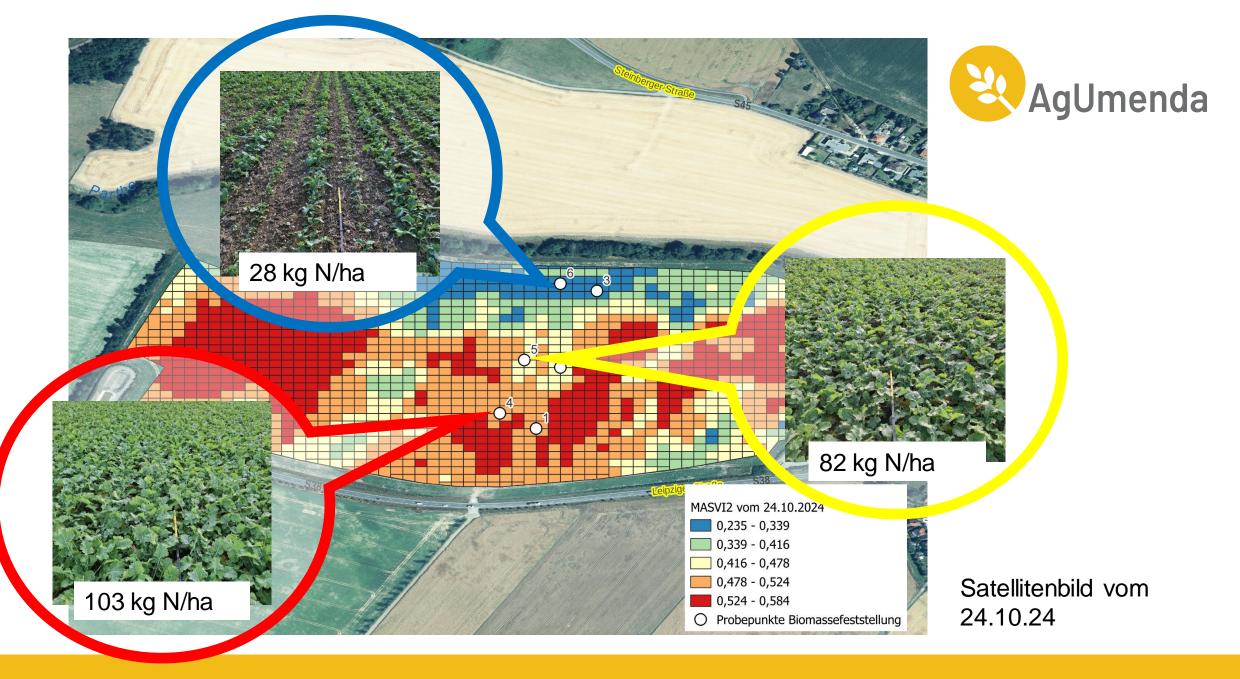
Aufnahmevermögen der folgenden Kultur?






Nährstofftransfer Erbse zum Raps

Bodenschätzung: SL5LöD 44/46 bis sL5öD 50/52



Biomasseaufwuchs Raps nach Erbse

Satellitenbild vom 24.10.24

Raps nach Leguminose

AgUmenda

- Feld ist frühzeitig frei
- reduzierte Bodenbearbeitung möglich
- Optimale Ausnutzung des früh von der Erbse freigesetzten Stickstoffs
- Der vor Winter vom Raps aufgenommene Stickstoff bietet N-Einsparpotenzial im Frühjahr

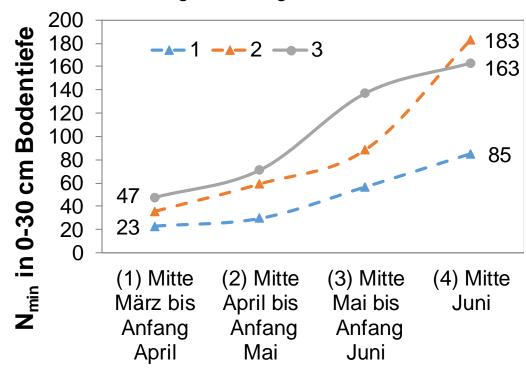
ABER:

- Phytosanitär: Sclerotinia
- Fläche steht nicht für org. Düngung im Herbst zur Verfügung
- Luxusfolge + Marktrelevanz

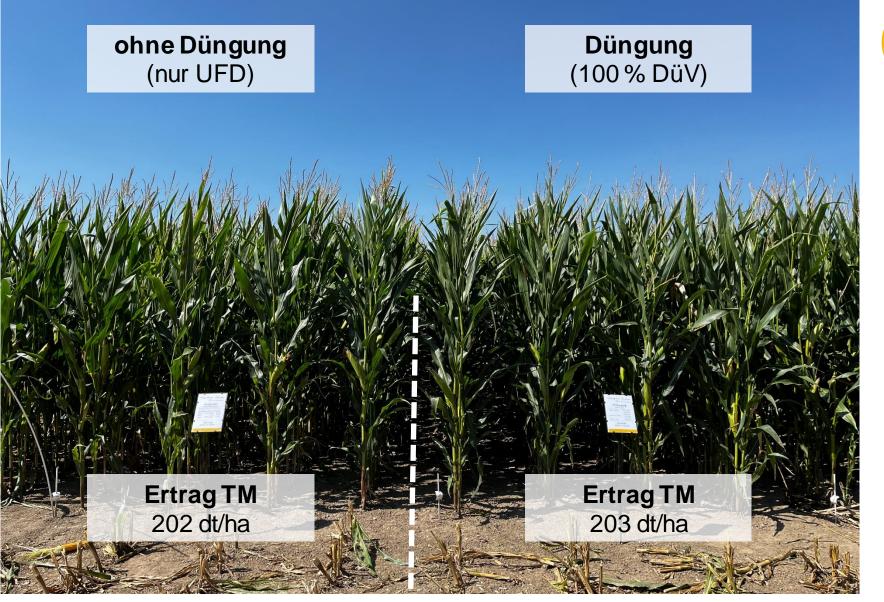
Strategie Leguminosen-Vorfrucht zu Weizen

- N_{min}-Beprobung im Frühjahr
- Anpassung Startgabe
- Nitratschnelltest für 2. und
 3. Gabe

Differenz in der Düngebedarfsermittlung – Wintergerste am Standort Strelln


- Wintergerste nach Erbsen
 - DüV: 135 kg N/ha
 - webBESyD: 95 kg N/ha (Abschläge für gute Vorwinterentwicklung und frühen Vegetationsbeginn, N_{min}-Beprobung bis 90 cm)
 - Startgabe: reduziert auf 30 kg N/ha

Umverteilung Gesamt-N: Nutzung der N-Nachlieferung zu Mais



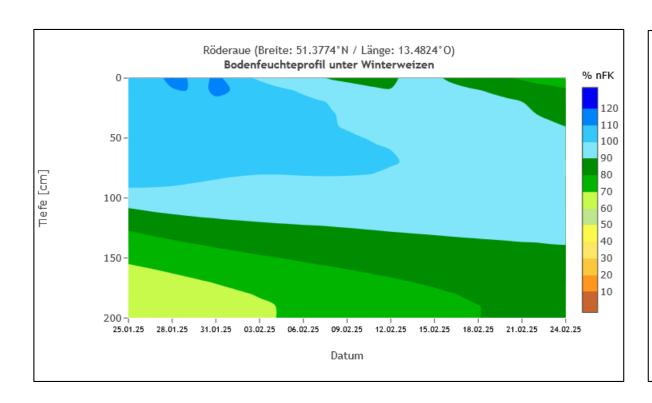
- 1 Sandböden, schwache/normale ZwFr
- 2 Sandböden, kräftige ZwFr/Blühmisch.
- 3 Lehmige bis tonige Böden

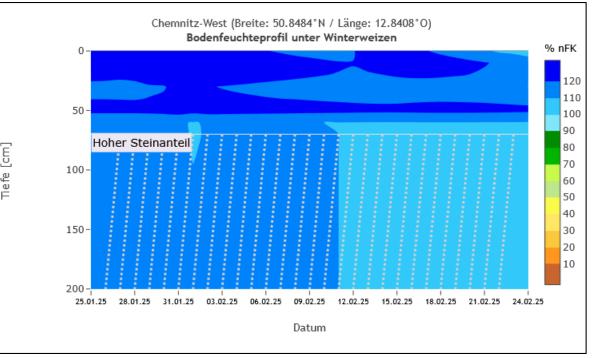
 N-Mineralisation hat eine größere Bedeutung als N_{min} im Frühjahr!

Effekt der
Nachlieferung –
kurzfristig/
moderat nutzbar
ohne Verlust der
Bodenfruchtbarkeit

Maisversuch Strelln am 20.08.2024 zum Feldtag

Umverteilung Gesamt-N Zusammenfassung

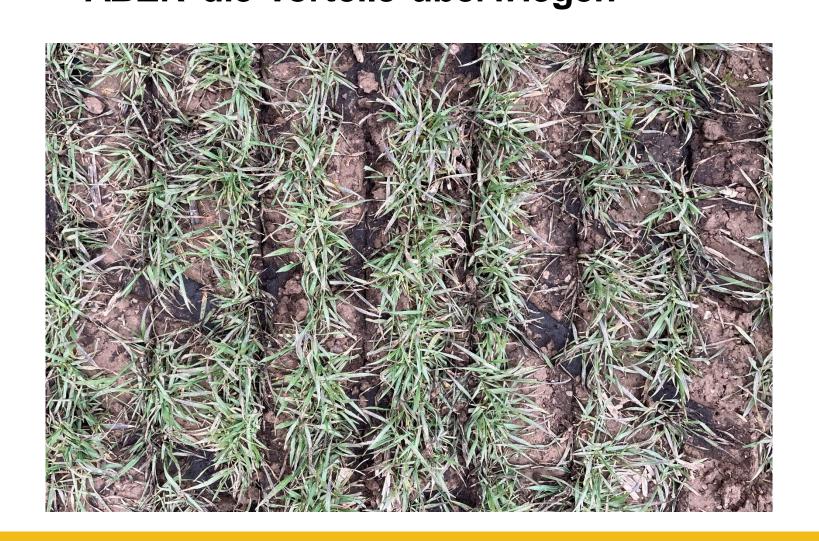

Nachlieferung nutzen und somit Dünger einsparen im Mais (und Rüben, Kartoffeln, Sonnenblumen)



Umverteilung der Düngemenge z.B. in (Qualitäts-) Weizen

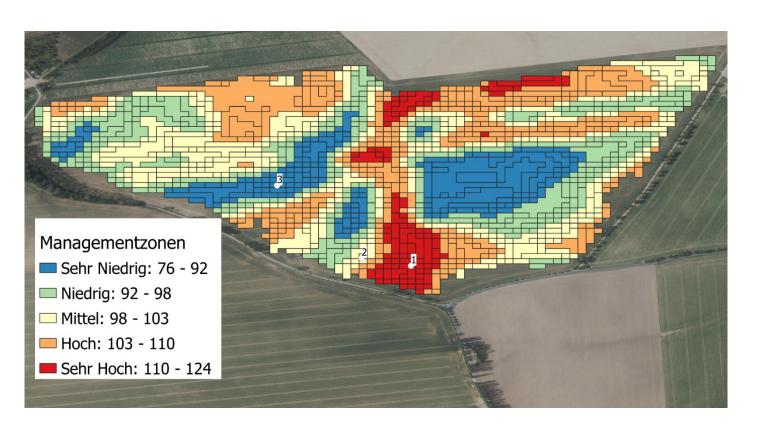
Organische Düngung im Getreide Die Gegebenheiten müssen passen

Einsatz flüssiger org. Dünger im Getreide Chancen zur besseren Verteilung im Frühjahr



- Getreide = großes Ausbringpotential, ermöglicht moderate Mengen
- Mineraldünger einsparen
- z.T. eingeschränkte Umsetzbarkeit im Betrieb
 - Befahrbarkeit der Flächen –
 Verfahrenssicherheit stark wetterabhängig
 - Technische Ausstattung
 - Schlaggeometrie
- Von Vorteil: gut fließfähige und nährstoffreiche Gülle (Separierung)
- Effizientes Einschlitzen in den Boden
- Alternative: Verschlauchungssysteme

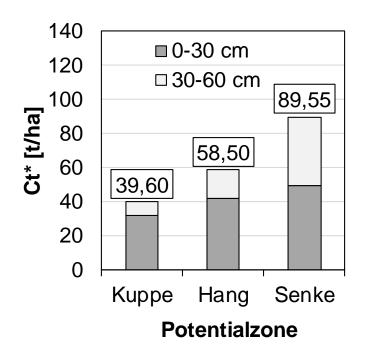
Wirtschaftsdünger können N-Bilanzen erhöhen – ABER die Vorteile überwiegen

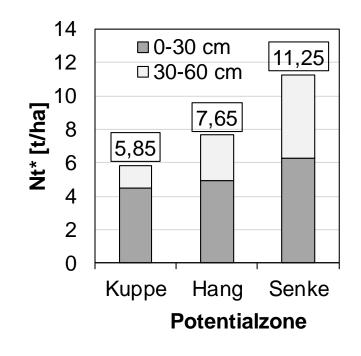


Vorausgesetzt:

- moderate Mengen
- optimaleApplikationstermine
- verlustarmeAusbringung
- geeignete
 Fruchtarten

Teilflächenspezifische Düngung Beispiel stark kupierter Ackerschlag in d. Lommatzscher Plfege





Ergebnisse aus der Praxis: Einfluss des Reliefs auf den C_tund N_t-Gehalt auf einem Ackerschlag in der Lommatzscher Pflege

Kornertrag (dt/ha)

• Kuppe: 84

• Hang: 107

• Senke: 119

Gehalt an Kohlenstoff (C_t)

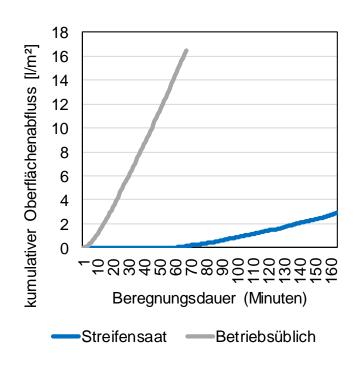
Gehalt an Gesamtstickstoff (N_t)

^{*}bei unterstellter Lagerungsdichte von 1,5 g/cm³

Beispielrechnung zur Reduzierung der N-Düngemengen in der Teilfläche

	EH	Kuppe	Hang	Senke
N-Düngung	kg/ha	160	170	120
Düngemenge Teilschlag	kg N	640	1.353	530
zul. Düngemenge nach -				
20%-Regelung	kg N		2.490	
Düngemenge Tflangepasst	kg N		2.461	
Bisherige Düngemenge	kg N		3.112	

Fazit: Im Einzelfall durch Teilflächenspezifische Düngung Reduktion um 20 %



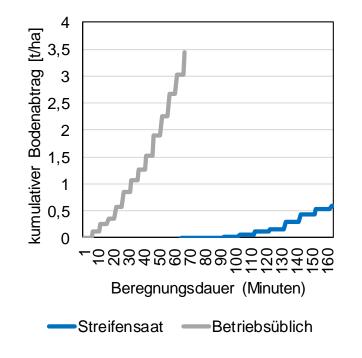


Bild: erstellt mit Microsoft Designer

Bodenabtrag Winterraps Standort Lichtenstein (Ls2- schwach sandiger Lehm)

Oberflächenabfluss (Wasser)

Bodenabtrag (Sediment)

Fazit zu Einsparpotentialen

Sehr betriebsindividuell, standortbezogen (einzelbetriebliche Betriebsberatung)

Gelungener Nährstofftransfer = Einsparung im Frühjahr (Vorwinterentwicklung einbeziehen in DBE)

Einsparpotential der Sommerungen: je nach Nachlieferungspotential (kurzfristig, ohne Bodenfruchtbarkeit langfristig zu gefährden)

Teilflächenspezifik nach Potentialkarten: auf inhomogenen Flächen hohes Einsparpotential

Organik steht und fällt mit Befahrbarkeit, breiter Verteilung (moderater, verträglicher Einsatz)

Bodenbedeckung: mehr Erosionsschutz, weniger Mineralisation durch Bodenbewegung

REGIONAL

LANDWIRTSCHAFT

LANDLEBEN

SERVICE

Home » News » Wegen guter N-Bilanz: Landwirt wird von Auflagen befreit

Rote Gebiete

Wegen guter N-Bilanz: Landwirt wird von Auflagen befreit

Ausblick?

Bild: Bauernzeitung

Feldtage 2025 unter Beteiligung der AgUmenda

Kontakt:

Katharina Schmidt

Tel.: 01738210870

k.schmidt@agumenda.de

Regelmäßige Informationen zum Landwirtschaftlichen Gewässerschutz im Pflanzenbaublog <u>www.agumenda.de</u>

Maßnahmenkatalog zur Vermeidung von potentiellen N-Austrägen in Grundwasserkörper (Stand 2025)

<u>Wintergetreide</u>

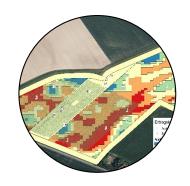
- N_{min}-Beprobung bis 90 cm Tiefe
- Nitratschnelltest + Düngefenster
- org. Düngung im Bestand

<u>Winterraps</u>

 N-Aufnahme vor Winter

Mais, Zuckerrübe

- standortspezifische N-Nachlieferung
- N-Bereitstellung Zwischenfrucht
- höhere N-Ausnutzung org. Dünger
- Streifenbearbeitung


Fruchtarten übergreifend

- N-Düngung bei Trockenheit
- angepasster
 Bestandesaufbau über Aussaat
- Ernährungszustand Pfl. (KPA)

<u>Allgemeines</u>

- Optimierung Düngerstreuer
- ZwFr-Anbau
- pH -Wert/ Grundnährstoffe
- Anbau extensiver Fruchtarten
- Einschätzung Bodenzustand

Teilfläche

- Düngung nach Satellitenkarten
- Grunddüngung
- N_{min}-Beprobung nach Zonen
- stabile Ertrags-zonen
- Zonen mit hoher N-Nachlieferung
- Digitale Entscheidungshilfe N-Düngung

Literatur

- (1) Dieser et al. (2023): Mona Dieser, Steffen Zieseniß, Henrike Mielenz, Karolin Müller, Jörg-Michael Greef, Burkhard Stever-Schoo, Nitrate leaching potential from arable land in Germany: Identifying most relevant factors, Journal of Environmental Management, Volume 345, 2023, ISSN 0301-4797, https://doi.org/10.1016/j.jenvman.2023.118664., (https://doi.org/10.1016/j.jenvman.2023.118664.,
- (2) Kage et al. (2022): Kage, Henning, Maren Rose, Insa Kühling, Fruchtfolgegestaltung als Baustein für eine effektive Stickstoffversorgung der Ackerkulturen, 2022
- (3) Werisch (2021): Stefan Werisch, Aktuelle Ergebnisse der Lysimeterstation Brandis zu Nitratdynamiken im Sickerwasser landwirtschaftlich genutzter Lysimeter, 29.03.2021